In Depth Patient Reports - default

Search Health Information   


Scoliosis

MyHealth

Description:

An in-depth report on the causes, diagnosis, treatment, and prevention of scoliosis.



Highlights:

Overview

  • The spine is a column of small bones, or vertebrae,that supports the entire upper body. Scoliosis is an abnormal curving of the spine.
  • About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment.
  • Among persons with relatives who have scoliosis, about 20% develop the condition.
  • In 80% of patients, the cause of scoliosis is unknown. Such cases are called idiopathic scoliosis.

Screening

  • Screening programs for scoliosis, which began in the 1940s, are now required in middle or high schools in many states, but there is considerable debate over whether screening programs are effective.
  • Consensus guidelines recommend visual inspection screening for girls in 5th and 7th grades, and for boys in 8th grade. However, the U.S. Preventive Services Task Force recommends against routine screening due to a lack of supporting data.
  • A recent review of previous studies found that using the forward bend test alone in school screenings is not sufficient, but not enough data exists on the usefulness of other tests in screening programs.

Treatment Approaches

  • Caregivers must assess the likelihood of progression when considering treatment options, because severe scoliosis can lead to lung complications and breathing difficulties.
  • Braces are often used in children with curvatures between 25 and 40 degrees who are still growing.
  • A multicenter randomized trial, Bracing in Adolescent Idiopathic Scoliosis Trial (BrAIST), compared bracing for 18 hours per day with watchful waiting. The study was stopped early because it was observed that bracing in adolescents was very effective at helping to avoid the need for surgery.
  • Most scoliosis operations involve fusing the vertebrae. However, the instruments and devices used to support the fusion, such as rods, hooks, and screws, vary.


Introduction:






Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Kyphosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Scoliosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Kyphosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Vertebrae


Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Kyphosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Scoliosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Kyphosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Intervertebral disk



Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Kyphosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Scoliosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Kyphosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Vertebrae


Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Kyphosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Scoliosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Kyphosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Spinal curves




Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Kyphosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Scoliosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Kyphosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Vertebrae


Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Kyphosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Scoliosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Kyphosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Intervertebral disk



Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Kyphosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Scoliosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Kyphosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Vertebrae


Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Kyphosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Scoliosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Kyphosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Sacrum





Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Kyphosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Scoliosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Kyphosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Vertebrae


Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Kyphosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Scoliosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Kyphosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Intervertebral disk



Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Kyphosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Scoliosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Kyphosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Vertebrae


Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Kyphosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Scoliosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Kyphosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Spinal curves




Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Kyphosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Scoliosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Kyphosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Vertebrae


Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Kyphosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Scoliosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Kyphosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Intervertebral disk



Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Kyphosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Scoliosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Kyphosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Vertebrae


Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Kyphosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Scoliosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Kyphosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

skeletal spine






Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Kyphosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Scoliosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Kyphosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Vertebrae


Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Kyphosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Scoliosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Kyphosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Intervertebral disk



Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Kyphosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Scoliosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Kyphosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Vertebrae


Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Kyphosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Scoliosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Kyphosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Spinal curves




Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Kyphosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Scoliosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Kyphosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Vertebrae


Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Kyphosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Scoliosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Kyphosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Intervertebral disk



Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Kyphosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Scoliosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Kyphosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Vertebrae


Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Kyphosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Scoliosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Kyphosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Sacrum





Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Kyphosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Scoliosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Kyphosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Vertebrae


Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Kyphosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Scoliosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Kyphosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Intervertebral disk



Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Kyphosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Scoliosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Kyphosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Vertebrae


Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Kyphosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Scoliosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Kyphosis

Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.

Spinal curves




Scoliosis affects about 2 to 3% of the United States population (about 6 million people). It can occur in adults, but it is more commonly diagnosed for the first time in children aged 10 to 15 years. About 10% of adolescents have some degree of scoliosis, but less than 1% of them develop scoliosis that requires treatment. The condition also tends to run in families. Among people with relatives who have scoliosis, about 20% develop the condition.

Adults may also have scoliosis that is not linked to any physical impairment, as well as scoliosis that is linked to spine problems.

The Spine

Vertebrae. The spine is a column of small bones, or vertebrae, that support the entire upper body. The column is grouped into three sections of vertebrae:

  • Cervical (C) vertebrae are the 7 spinal bones that support the neck.
  • Thoracic (T) vertebrae are the 12 spinal bones that connect to the rib cage.
  • Lumbar (L) vertebrae are the 5 lowest and largest bones of the spinal column. Most of the body's weight and stress fall on the lumbar vertebrae.

Each vertebra can be designated by using a letter and number. The letter reflects the region (C=cervical, T=thoracic, and L=lumbar), and the number signifies its location within that region. For example, C4 is the fourth vertebra down in the cervical region, and T8 is the eighth thoracic vertebra.

Below the lumbar region is the sacrum, a shield-shaped bony structure that connects with the pelvis at the sacroiliac joints. At the end of the sacrum are 2 to 4 tiny, partially fused vertebrae known as the coccyx or tailbone.

The Spinal Column and its Curves. Altogether, the vertebrae form the spinal column. In the upper trunk, the column normally has a gentle outward curve (kyphosis) while the lower back has a reverse inward curve (lordosis).

The Disks. Vertebrae in the spinal column are separated from each other by small cushions of cartilage known as intervertebral disks. Inside each disk is a jelly-like substance called the nucleus pulposus, which is surrounded by a tough, fibrous ring called the annulus fibrosis. The disk is 80% water. This structure makes the disk both elastic and strong. The disks have no blood supply of their own, relying instead on nearby blood vessels to keep them nourished.

Processes. Each vertebra in the spine has a number of bony projections, known as processes. The spinous and transverse processes attach to the muscles in the back and act like little levers, allowing the spine to twist or bend. The particular processes form the joints between the vertebrae themselves, meeting together and interlocking at the zygapophyseal joints (more commonly known as facet or z joints).

Spinal Canal. Each vertebra and its processes surround and protect an arch-shaped central opening. These arches, aligned to run down the spine, form the spinal canal. The spinal canal encloses the spinal cord, the central trunk of nerves that connects the brain with the rest of the body.

 Click the icon to see an image of the bones of the spine.  Click the icon to see an image of the sacrum.   Click the icon to see an image of spinal curves. Click the icon to see an image of an intervertabral disk.   Click the icon to see an image of the vertebrae. 

Scoliosis is an abnormal curving of the spine. The normal spine has gentle natural curves that round the shoulders and make the lower back curve inward. Scoliosis typically causes deformities of the spinal column and rib cage. In scoliosis, the spine curves from side-to-side to varying degrees, and some of the spinal bones may rotate slightly, making the hips or shoulders appear uneven. It may develop in the following ways:

  • As a single primary side-to-side curve (resembling the letter C)
  • As two curves (a primary curve along with a compensating secondary curve that forms an S shape)

Scoliosis usually develops in the area between the upper back (the thoracic area) and lower back (lumbar area). It may also occur only in the upper or lower back. Doctors define scoliosis by the following characteristics:

  • The shape of the curve
  • Its location
  • Its direction
  • Its magnitude
  • Its causes, if possible
 Click the icon to see an image of scoliosis. 

The severity of scoliosis is determined by the extent of the spinal curve and the angle of the trunk rotation (ATR). It is usually measured in degrees. Curves of less than 20 degrees are considered mild and account for 80% of scoliosis cases. Curves that progress beyond 20 degrees need medical attention, usually involving periodic monitoring to make sure the condition is not becoming worse.

Defining Scoliosis by the Shape of the Curve

Scoliosis is often categorized by the shape of the curve, usually as either structural or nonstructural.

  • Structural scoliosis: In addition to the spine curving from side to side, the vertebrae rotate, twisting the spine. As it twists, one side of the rib cage is pushed outward so that the spaces between the ribs widen and the shoulder blade protrudes (producing a rib-cage deformity, or hump). The other half of the rib cage is twisted inward, compressing the ribs.
  • Nonstructural scoliosis: The curve does not twist but is a simple side-to-side curve.

Other abnormalities of the spine that may occur alone or in combination with scoliosis include hyperkyphosis (an abnormal exaggeration in the backward rounding of the upper spine) and hyperlordosis (an exaggerated forward curving of the lower spine, also called swayback).

 Click the icon to see an image of kyphosis. 

Defining Scoliosis by Its Location

The location of a structural curve is defined by the location of the apical vertebra. This is the bone at the highest point (the apex) in the spinal hump. This particular vertebra also undergoes the most severe rotation during the disease process.

Defining Scoliosis by Its Direction

The direction of the curve in structural scoliosis is determined by whether the convex (rounded) side of the curve bends to the right or left. For example, a doctor will diagnose a patient as having right thoracic scoliosis if the apical vertebra is in the thoracic (upper back) region of the spine, and the curve bends to the right.

Defining Scoliosis by Its Magnitude

The magnitude of the curve is determined by taking measurements of the length and angle of the curve on an x-ray view.

Defining Scoliosis by Its Cause

Scoliosis may be classified as congenital (abnormalities in the vertebral column present at birth) or neuromuscular (caused by conditions or injuries that affect the function of the central nervous system, peripheral neuromuscular unit, or sensory/motor dysfunction). Most often, the cause of scoliosis is not known.